Resource Library

Keyword
GO
카테고리별










산업별














1911 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Airbus 成功案例

通过优化实现A380减重



在英国,通过与Altair的合作,空客公司生成了创新性的肋结构设计,为每架飞机节约了500kg的重量。Altair团队还支持了将设计集成到总体设计、制造和供应链的能力。

Tallent Automotive

Customized Solutions to Reduce Chassis Mass by 25%



To meet the growing demands for lightweight, fuel efficient vehicles, Tallent Automotive required a more automated method to produce minimum mass sheet metal chassis components which took performance targets and manufacturing constraints into account.

Tallent Automotive 成功案例

客户化解决方案降低25%的底盘重量



为了满足日益增长的轻量化和低油耗需求,Tallent汽车需要在保证性能目标和考虑制造约束的条件下,使用更自动化的方法来降低金属板材底盘部件的重量。


OPEL

Improving Design Productivity through Automation



OPEL identified the design process of engine mount systems as a candidate for a process automation solution. As an objective, NVH engineers had to be able to generate input decks even without detailed load case information. Knowledge had to be captured and re-used in a standardized workflow. Automatic optimization and robustness analysis of the mount parameters had to be integrated into the process to quickly improve final product quality.

OPEL 成功案例

通过流程自动化提高设计效率



欧宝将发动机悬置系统的设计流程作为其中一种流程自动化解决方案。项目的其中一个目标是,NVH工程师能够生成求解输入文件,即使是没有具体的载荷信息的情况下。需要捕捉到这些经验知识并将其应用到标准化的工作流程中。悬置系统参数的自动优化和稳健性分析必须集成到流程中以迅速改善产品质量。

Medtronic

Reducing Medical Stent Stress by 71%



Medtronic designs and manufacturers medical devices used the world over. Traditionally, computer aided engineering (CAE) and virtual simulation were not fully utilized within the industry as the verification process for often microscopic components was too slow. When designing a new medical stent (an expandable mesh inserted into a patient's artery to keep it open) Medtronic wanted to improve the design and speed up the validation process. Altair ProductDesign worked closely with Medtronic’s own engineers to optimize the performance of the new stent.

Medtronic 成功案例

降低医学支架71%的应力



美敦力(Medtronic)公司设计和制造医学设备,在世界各地都有广泛的应用。由于验证微小部件的过程非常慢,通常CAE和虚拟仿真技术并没有完全融入到工业设计中。当设计一个新型医学支架(一个可扩张的网插入到病患的动脉中使其保持张开的状态),美敦力想要改进设计并加速验证过程。Altair ProductDesign与美敦力的工程师紧密合作,共同开发了一个新的支架模型。

Unilever

Optimizing Packaging Designs & Reducing Prototype Costs



To remain at the forefront of innovation within the male grooming market, Unilever, constantly looks for ways to differentiate their products from competitor offerings. For the Lynx (Axe) brand, Unilever needed to adopt a simulation and analysis approach when designing a new deodorant packaging concept and required a development partner to assist with the design and testing of the new can.

联合利华成功案例

优化包装设计与降低样件成本



为了保持男性护肤品在市场中的领先地位,联合利华一直在不断寻找使他们的产品区别于其竞争对手的方法。对于Lynx(Axe)品牌,联合利华采用仿真分析的方法来设计除臭剂的新包装,并且寻求合作伙伴来协助完成新包装的设计和试验。

NASA

A Safer Landing with Water Impact Analysis



Using Altair’s own HyperWorks virtual simulation suite, Altair ProductDesign built an accurate finite element model of the module from CAD data supplied by NASA, as well as a section of water and air which matched the conditions from the lake used during the physical tests. The effect on the module’s structure during impact was simulated to gauge how well the results correlated with the physical tests. The results showed excellent correlation between the simulation and physical tests, identifying areas where the model, input parameters and meshing methods could be improved to give a more accurate prediction of the event.

Scania

Reducing the Development Cycle with Assembly Automation



European based heavy vehicles manufacturer, Scania, is known for its ability to deliver highly customized products. This concept creates a significant challenge for computer aided engineering (CAE) departments, as engineers must rapidly verify a number of different variants with finite element simulations. Therefore, automating the entire virtual model assembly process was a major goal for Scania. The process, which included tasks such as positioning hundreds of components, creating contact definitions and building part connections with pre-strained bolts, was time consuming and prone to error.

Scania 成功案例

减少装配自动化的开发周期



欧洲的重型车辆制造商Scania,以高级订制产品而闻名。这一理念为CAE部门提出了挑战,工程师必须迅速地确认有限元分析中不同变量。这样,虚拟模型的装配流程自动化就成为Scania的目标。这一流程包括了将几百个部件自动定位,为部件间定义接触,为连接螺栓定义预紧力,这些工作非常耗时而且容易出错。

Heart Valve Analysis

Predicting Aortic Stenosis through Simulation

Aortic valve Stenosis is a heart value disorder that narrows the aortic valve opening due to calcium build up in the leaflets. This prevents the valve from opening properly and obstructs the flow of blood causing the heart to work harder. Finite Element Analysis (FEA) has the potential to allow researchers to study the condition without the need for traditional physical testing. An efficient process was required to make this possible since modeling tissue behavior, back pressure, and the interaction between tissue and blood are highly complex challenges. Altair ProductDesign led this self funded project to improve the simulation and analysis of heart condition research.

Unilever

Customized Solutions to Reduce Packaging Waste



With increasing pressures on all manufacturers to reduce the environmental impact of their products, consumer goods giant, Unilever, needed a way to minimize the material used in its packaging while ensuring that it remained strong enough to withstand transportation loads and a variety of use conditions.

联合利华成功案例

定制化解决方案减少包装浪费



所有的制造商都在降低其产品对环境的影响方面都面临着越来越大的压力。日用消费品巨头联合利华,需要找到一个方法使在产品包装上使用的材料最少,同时要保证结构强度来承受运输载荷和日常使用工况。

Automotive Development: All Eyes on CAE Weight Management

The automotive development process
is still focused on objectives such as
durability and crash safety, while weight is often limited to the very end of the design process. Through the establishment of the “Optimization Center” (OC) concept, Altair ProductDesign has developed an innovative
design model combining performance
features with weight reduction goals. This article describes the OC concept dealing with everything from the optimization of single components to an entire optimization process known as “CAE
Weight Management”.

Faster, better, lighter – HyperWorks Helps Formula Student Team to Reach Top Ten

The KA-RaceIng team is the Formula Student Racing Team of the Karlsruhe Institute of Technology (KIT). Each year the team members develop, design, and manufacture a racing car that competes with 270 teams from all over the world at the Formula Student competition. While working in the KA-RaceIng Team, students gain valuable experience and engineering skills. Building a race car within 6 months with limited resources sets the need for Computer Aided Engineering tools to optimize components and the vehicle frame prior to production. A common design goal is to reach a minimum weight of the vehicle while keeping a high stiffness. Furthermore the production costs and maintenance effort during the races should be as low as possible. To reach these goals KA-RaceIng used HyperWorks.

Applications of Advanced Composite Simulation and Design Optimization

Usage of fiber reinforced composite material entered an new era when leading aircraft OEMs took an unprecedented step to design and manufacture essentially full composite airframe for commercial airliners. Composite structures offer unmatched design potential as the laminate material properties can be tailored almost continuously throughout the structure. However, this increased design freedom also brings new challenges for the design process and software. Moreover, as a relatively new material, composite behaviors are more complex and less fully understood by design engineers. Therefore, reliable simulation for highly complex events like bird strike and ditching can play an important role in shortening the product design cycle. This paper showcases two area of CAE tools for composite applications. On advanced simulation, bird strike simulation with Altair RADIOSS [1] is demonstrated on an aircraft underbelly fairing. On design optimization, an airplane wing structure is designed using an innovative composite optimization process implemented in Altair OptiStruct [1-3]. OptiStruct has seen increasing adoption among aerospace OEMs, as demonstrated in the Bombardier application process described in this paper.

Scheduling Jobs onto Intel® Xeon Phi™ using PBS Professional

Working closely with Intel, Altair has ensured that PBS Professional supports the Intel® Xeon Phi™ architecture targeting high performance computing applications. This paper describes the basic and advanced configurations of PBS Professional for scheduling jobs onto Intel Xeon Phi devices.


PBS users: Download the toolkit to automate configuration of PBS for a Xeon Phi environment

Using HyperWorks to Generate Electrically Large Surface Meshes for Radar Cross Section or Antenna Placement Simulation

Radar Cross Section (RCS) and installed antenna placement are important parameters for aircraft designs. RCS is a measure of how detectable an object, such as an aircraft, is with radar. A large RCS indicates that an object, such as a jet aircraft, is easily detected.


SELEX Galileo used HyperWorks to generate arbitrarily large surface meshes, with defined electrical properties at the element level, for use with electromagnetic (EM) solvers to calculate either RCS of an aircraft or to determine where to place an antenna for optimum performance.


For this case study a fast-jet aircraft with approximately 100 million mesh elements was assessed for radar tracking and avoidance capabilities.

使用HyperWorks生成雷达截面或天线位置电子分析使用的大规模曲面网格

雷达截面(RCS)和安装天线位置是飞机设计的重要参数。RCS是目标可检测性的衡量指标,例如飞机对于雷达的可检测性。较大的RCS表示目标(例如喷气式飞机)容易被检测到。


SELEX GRLILED公司使用HyperWorks生成任意大的曲面网格并在单元上定义电子属性。生成的网格用于在电磁(EM)求解器中计算飞机的RCS或确定如何放置天线以获得最佳性能。 本案例使用一个1亿单元的快速喷气式飞机网格模型用于雷达追踪和隐身性。


要生成1 亿个单元的曲面网格需要先将几何切分为更小的曲面,每个曲面需要足够小以便能够使用网格划分算法高效地划分网格。

Simulation Streamlines Aircraft Door Development

The Eurocopter Group leverages analysis to cut design time and automate the process of developing safe aircraft closures.



By Michele Macchioni

Concept To Reality Summer/Fall 2011

仿真流程化的飞机舱门研发

欧洲直升机公司应用仿真技术缩短研发周期并实现飞机闭合系统研发流程自动化。



By Michele Macchioni

Concept To Reality Summer/Fall 2011

Bird Strike Simulation Takes Flight

The increasing number of bird-plane impacts gives rise to new CAE methods to address aircraft safety.



By Robert Yancey

Concept To Reality Summer/Fall 2011

鸟撞分析拯救生命

飞鸟撞击飞机的事故不断增加,利用新的CAE方法来确保飞机安全性也不断增加。



By Robert Yancey

Concept To Reality Summer/Fall 2011

Structural Optimization Helps Launch Space Payloads

Aerospace company employs simulation software to reduce weight in the Launch Abort Manifold for the Orion Multi-Purpose Crew Vehicle.



By Blaine E. Phipps, Michael H. Young and
Nathan G. Christensen

Concept To Reality Summer/Fall 2011

Inside a NASA Production Supercomputing Center

It takes a super workload management tool to power grid, cluster and on-demand computing environments for computational modeling and simulation applications at NASA.



By Cathleen Lambertson

Concept To Reality Summer/Fall 2011

PBS Professional Utilizes Intel Cluster Checker to Validate the Health of an HPC Cluster

On clusters that are Intel® Cluster Ready (ICR) certified, PBS Professional can utilize Intel® Cluster Checker for gathering real-time information about the cluster at the very moment a job has been scheduled. Using this immediate feedback, PBS Professional can ensure that a job is only being executed on a cluster that has passed a check by Intel Cluster Checker.

Multi-disciplinary Optimization of Aero-structures

Learn about how HyperWorks can be used to perform multi-disciplinary analysis and optimization involving structural, thermal, dynamic, and fluid analysis.

Topology Optimisation of an Aerospace Part to be Produced by Additive Layer Manufacturing (ALM)

OptiStruct helped EADS achieve significant weight savings in the design of ALM (additive Layer Manufacturing) components.

拓扑优化在飞机零部件叠层制造(Additive Layer Manufacturing, ALM)中的应用

OptiStruct帮助EADS在ALM (叠层制造)零件设计中获得显著的减重。

Assystem Used HyperWorks CAE Simulation to Design, Simulate and Test Nuclear Encapsulation Vessels

Assystem is an international engineering and innovation consultancy group with a presence in 14 countries and 8500 employees.

HyperMesh, RADIOSS and HyperStudy were used to design the safest possible nuclear encapsulation vessel for securely containing nuclear material. The designs not only achieved pressure vessel code PD5500 standards, but also helped Assystem gain external accreditation for the pressure vessel’s compliance to code.

Download the Assystem Case Study


An Aerodynamic Study of Bicycle Wheel Performance Using CFD

A methodology is presented to apply CFD to study air flow around a rotating bicycle wheel in contact with the ground. The bicycle wheel studied here is an accurate geometrical representation of a commercial racing wheel (Zipp 404). Reynolds-Averaged Navier Stokes (RANS) and Delayed Detached Eddy Simulation (DDES) results are computed at a range of speeds and yaw angles commonly encountered by cyclists. Drag and side (or lift) forces are resolved and compare favorably to experimental results obtained from wind tunnel tests. Vertical forces acting on a rotating bicycle wheel are presented for the first time. A unique transition from downward to upward acting force is observed as the yaw angle is increased. Flow structures are identified and compared for different yaw angles. It is expected that a more complete comprehension of these results will lead to improvements in the performance and handling characteristics of bicycle racing wheels used by professional cyclists and triathletes.

A Comparative Aerodynamic Study of Commercial Bicycle Wheels Using CFD

A CFD methodology is used to study the performance of several commercial bicycle wheels over a range of speeds and yaw angles. The wheels studied in this work include the Rolf Sestriere, HED H3 TriSpoke, the Zipp 404, 808 and 1080 deep rim wheels and the Zipp Sub9 disc wheel. Wheels are modeled at speeds of 20mph and 30mph, in contact with the ground, using Reynolds-Averaged Navier Stokes (RANS). Drag, vertical and side (or lift) forces are reported for each wheel. Turning moments are also calculated using the resolved side
forces to examine aspects of stability and maneuverability. Drag and side forces over the range of yaw angles studied compare favorably to
experimental wind tunnel results. The previously reported unique transition from downward to upward acting vertical force on the Zipp 404 wheel for increasing yaw angles is observed for all deep rim wheels and the disc wheel studied here. Wheels were also modeled at a critical yaw angle of 10 degrees using Delayed Detached Eddy Simulation (DDES) to examine the transient aspects of flows around moving bicycle wheels. It is hoped that a more complete comprehension of these results will lead to improvements in performance, safety and control of bicycle racing wheels used by amateur and professional cyclists and triathletes.

A Practical Analysis of Unsteady Flow Around a Bicycle Wheel, Fork and Partial Frame Using CFD

CFD is used to study air flow around a rotating bicycle wheel in contact with the ground, extending previous ‘wheel-only’ work on this problem by including the fork, head tube, top tube, down tube, caliper and brake pads. Unsteady simulations, using a Delayed Detached Eddy Simulation (DDES) turbulence model, were run for 9 different wheel and front fork configurations, over 10 different operating conditions (5 yaw angles, repeated for two different speeds, commonly encountered by cyclists), resulting in 90 transient design points.

MIMOS Berhad Delivers HPC Across Malaysia with Cloud

In partnering with PBS Works, MIMOS Berhad
brought onboard a strategic collaborator
committed to help its clients overcome
these limitations by deploying Altair's
PBS Professional®, the industry leading
commercial workload management and job
scheduling solution.

HyperShape/CATIA Streamlines Design Process of Functional and Light Components for Automotive Industry

belCAT Ingenieurbüro Stuttgart and IndustrieHansa Consulting & Engineering GmbH, two German engineering service providers had to design and develop an automotive gear bracket for a renown German automotive OEM. Based on a given design space and static as well as frequency load cases the gear bracket needed to fit to an existing engine design. In a very early development phase, even before a draft CAD model was available, belCAT and IndustrieHansa developed the gear bracket conjunctively and determined the ideal material allocation for the given boundary conditions and loads with HyperShape/CATIA, Altair’s in
CATIA V5 integrated optimization tool. The optimization disciplines that can be handled with HyperShape/CATIA include Topology Optimization, Topography Optimization, Free Shape Optimization, and Gauge Optimization.

MCE-5 DEVELOPMENT uses HyperWorks Suite to optimize engine performance

MCE-5 DEVELOPMENT is developing the MCE-5 VCRi variable compression ratio engine which reduces fuel consumption and CO2 emissions from 20% to 35%. The MCE-5 VCRi engine provides a concrete technological and commercial response to the environmental, energy and economic challenges faced by the automotive industry. The MCE-5 VCRi engine combines advantages of both Diesel and gasoline.


For more information on the MCE-5 VCRi project, please visit: www.VCR-i.com.

Improving NASA Altair Lunar Lander Design: Optimization Reduces Weight and Meets Design Requirements

Altair® OptiStruct® was used to provide conceptual design ideas necessary to reduce the Altair Lunar Lander Descent Module weight and meet specified design requirements not achieved in the
baseline design.

改进NASA“牵牛星”登月车设计:应用优化技术 进行结构减重并实现设计目标

Altair结构优化工具OptiStruct为“牵牛星”登月车设计提供必要的概念设计思路,成功完成结构减重设计并达到预期设计目标。

Superior Industries Accelerates its Design Process With HyperWorks

Superior Industries was looking to identify a solution to aid in shortening the overall product design cycle through simulation. Altair HyperWorks, proved instrumental in automating some of the most tedious of tasks and dramatically impacted the design process.

Superior 使用HyperWorks 加快设计进程

Superior Industries一直在寻找一种帮助缩短整个设计周期的仿真解决方案。Altair HyperWorks是被证实了的可以自动化最复杂任务的工具,可极大地影响设计流程。

Operational Numerical Weather Prediction Job Scheduling at the Petascale

Several operational numerical weather prediction (NWP) centers will approach a petaflop of peak performance by early 2012 presenting several system operation challenges. An evolution in system utilization strategies along with advanced scheduling technologies are needed to exploit these breakthroughs in computational speed while improving the Quality of Service (QoS) and system utilization rates. The Cray XE6™ supercomputer in conjunction with Altair PBS Professional® provides a rich scheduling environment designed to support and maximize the specific features of the Cray architecture.

Cleveland Golf Drives Product Innovation Through Simulation and Optimization Using HyperWorks

Much more goes into a golf club than simply wood, iron and graphite. To shape the performance, the distinctive appearance, the personalized feel and even the sound of the club striking the ball, manufacturers must precisely engineer every aspect of the design. Today, simulation-driven design has dramatically reduced development time for new golf clubs while allowing them to meet strict regulations more efficiently.

HyperWorks仿真和优化工具驱动Cleveland Golf公司产品创新

Much more goes into a golf club than simply wood, iron and graphite. To shape the performance, the distinctive appearance, the personalized feel and even the sound of the club striking the ball, manufacturers must precisely engineer every aspect of the design. Today, simulation-driven design has dramatically reduced development time for new golf clubs while allowing them to meet strict regulations more efficiently.

Xeroxがシミュレーションで実現する高品質プリント

Xeroxが物理試験と仮想モデルの活用により、費用対効果に優れた高品質のオフィス用カラープリンタを開発(2010発行 C2R記事抜粋)

Getting the Right Design, Getting the Design Right

Conceptual design technologies impact product development.



By Alessandro Mazzardo

Concept To Reality Spring/Summer 2010

Forklift Manufacturer Cuts Pre-Processing Time in Half and Solves Stubborn Design Problems with Altair’s HyperWorks Suite

The main goal of NMHG and Chief Engineer Dr. Pedro Bastias was to virtually design, test and evaluate each product before any physical prototypes are made. Using HyperWorks, NMHG is saving time, cutting costs and identifying new ways to resolve stubborn engineering problems.

NMHG叉车制造商利用Altair HyperWorks削减50%的前处理时间并解决疑难设计问题

NMHG首席工程师Pedro Bastias博士的主要目标是在物理样机制造之前实现虚拟设计、测试和评价每个产品。 利用HyperWorks,NMHG减少了时间、降低了成本并找到了棘手工程问题的解决之道。

An Integrated Approach to Workload and Cluster Management: The HP CMU PBS Professional Connector

This paper describes the integration between Altair’s PBS Professional and HP’s Insight Cluster Management Utility (CMU), explaining how the concept of a “connector “unites these two tools to simplify cluster setup and job execution, and providing instructions for performing key PBS Professional tasks within Insight CMU. Click here to access more CMU resources.

オンラインセミナー資料 2010

アルテアエンジニアリング主催のオンラインセミナーに関する資料

Scheduling Jobs onto NVIDIA Tesla GPU Computing Processors using PBS Professional

With the advent of the Graphical Processing Unit (GPU) as a general-purpose computing unit, more and more customers are moving towards GPU-based clusters to run their scientific and engineering applications. This model allows users to use a CPU and GPU together in a heterogeneous computing model, where the sequential part of the application runs on the CPU and the computationally-intensive part runs on the GPU.

HyperWorks Improves Development Processes in Automotive Industry

In 2008 PWO Germany (Progress-Werk Oberkirch AG) had to develop and produce a new steel made automotive cross car beam (CCB) for the dash board of a new car. PWO received the CAD model, the design space definition and other pre-defined standards of the component from the customer and developed and produced the fitting cross beam based on this information. PWO used the HyperWorks Suite to develop the component. HyperMesh was used to transfer the CAD model into a FEA model, which was then used to run dedicated analysis and simulation tasks. To fulfill the requirements for crash and modal analysis, the company used OptiStruct to optimize the component, RADIOSS and other external solver to run the calculations and HyperView for the post processing. HyperForm was used to check the production feasibility of the individual components and for metal forming simulation tasks. It was important for PWO to have a software suite available that could cover all simulation tasks within one graphical user interface and licensing system.

HyperWorks改进汽车行业开发流程

2008年德国PWO公司 (Progress-Werk Oberkirch AG) 研发并生产一款新车型仪表板的钢制横梁 (CCB)。客户提供了CAD模型并规定了设计空间以及零部件的预定义规范。PWO基于以上信息研发并生产了合适的横梁。PWO利用HyperWorks进行该部件的研发。首先,利用HyperMesh将CAD模型处理成用于进行仿真的有限元模型。为满足碰撞以及模态要求,PWO利用OptiStruct对零部件进行优化、利用RADIOSS及其它外部求解器进行分析、利用HyperView进行后处理、利用HyperForm检查零部件的制造可行性并进行金属成型仿真。对于PWO来说,可以在同一用户界面同一软件许可证系统下进行各种仿真工作是非常重要的。

HyperWorks Improves Development Processes at Automotive Consultancy

csi entwicklungstechnik GmbH, a leading engineering service provider for the automotive industry has enhanced its simulation power with Altair‘s HyperWorks Suite. The company consolidated its CAE tools and now uses the large scale of HyperWorks, which offers a solution for almost every application needed in modern product development. csi will apply OptiStruct for optimization tasks, MotionView and MotionSolve for multi-body applications, and HyperMesh for pre-processing tasks. Additionally HyperShape/CATIA will be used for CAD integrated optimization and weight reduction.

Improving Efficiency and Accuracy at Eaton Aerospace with HyperWorks

The Hydraulic Systems Division of
Eaton’s Aerospace Group designs hydraulic
components and systems on many of the
world’s military and commercial aircraft
in the skies today. Eaton uses Altair HyperWorks within it's simulation processes to improve solution efficiency and accuracy.

HyperWorks帮助伊顿航空航天集团提高液压系统分析效率和精度

伊顿航空航天公司液压系统部门是全球众多军事和商业飞机液压零部件及系统的供应商之一。伊顿使用Altair HyperWorks仿真流程来改善其解决方案的有效性和准确性。

Cutting physical testing costs by 95% with HyperWorks

WJH Engineering Consultants provides finite-element analysis and design for many of America’s largest developers of medical devices. Company President, Jim Harrison, works directly with engineers at companies producing medical devices and with doctors to understand the clinical application of these products, including any anatomical loads or displacements that should be incorporated into their design.

WJH Engineering使用HyperMesh降低95%医疗器械物理测试成本

WJH工程咨询为众多美国大型医疗器械开发商提供有限元分析和设计服务。公司总裁Jim Harrison与医疗器械生产公司的工程师共同进行产品开发,也直接与医生一起了解这些产品的临床应用情况,包括能够满足人体要求的负载和位移变形等。

HyperWorks Accelerates Design Process and Development of Diesel Export Locomotive at RDSO

Altair HyperWorks helped RDSO reduce development time and optimize structural characteristics of the diesel export locomotive. Physical testing on these large, complex structures had to be limited. Using HyperMesh/HyperView pre/post processing capabilities, RDSO were able to simulate design and verify that engineering specifications are being met and help validate the final design.

Airline Seat Testing Soars to New Heights

French manufacturer Sicma Aero Seat SA
relies on virtual dynamic testing in the
evaluation of its custom aircraft seats.

航空座椅测试上升到新高度

法国制造商Sicma 航空座椅SA 有赖于为其定制的航空座椅进行虚拟动态测试。

Simulation and Analysis Investments Help Drive PLM Market Growth

The need to improve designs and reduce the cost of prototyping is fueling increased investments in simulation and analysis tools.

HyperWorks helps to improve development processes at F.S. Fehrer Automotive GmbH

F.S. Fehrer Automotive GmbH in Kitzingen is using the HyperWorks Suite to develop seat parts, form cushions and complete vehicle interior systems. The engineers use HyperWorks and especially RADIOSS for static and modal analysis. The seat of a vehicle is the direct and closest connection of the passenger with the automobile. Design and seating comfort play an important role in personalizing the vehicle model and convey the feeling of quality to the passenger. In addition, safety and variability are vital aspects for the development of interior parts of a vehicle.

HyperWorks帮助德国F.S.Fehrer汽车公司改善开发流程

      德国Kitzingen 的F.S. Fehrer 汽车公司使用HyperWorks软件包来开发座椅部件,从座垫到完整的汽车内部系统。工程师作用HyperWorks和RADIOSS做静力和模态分析。汽车座椅是乘员和汽车之间直接和最近的连接组件。设计和座位舒适在个性化车型和向乘客传达汽车质量的感觉上发挥重要作用。此外,安全和可变性是开发汽车内饰部分至关重要的方面。

Select PD case study

The CAE suite HyperWorks has been used by ABstructures to structurally design and optimize the winning yacht in the Volvo Ocean Race, Ericsson 4. The yacht, skippered by Torben Grael, claimed victory in the Volvo Ocean Race on June 27, 2009 in St. Petersburg, Russia, after 8 months and more than 37,000 nautical miles sailed around the world
under the harshest conditions.

HyperWorks Helps to Develop Race-Winning Yacht for Volvo Ocean Race 2009

The CAE suite HyperWorks has been used by ABstructures to structurally design and optimize the winning yacht in the Volvo Ocean Race, Ericsson 4. The yacht, skippered by Torben Grael, claimed victory in the Volvo Ocean Race on June 27, 2009 in St. Petersburg, Russia, after 8 months and more than 37,000 nautical miles sailed around the world
under the harshest conditions.

A Comprehensive Process for Composite Design Optimisation

Composite structures offer unmatched design potential as laminate material properties can be tailored almost continuously throughout the structure. Moreover, composite laminate can be manufactured to fit the ideal shape of a structure for aerodynamic and other performances. However, this increased design freedom also brings new challenges for the design process and software. It is shown in this paper that optimization technology is well suited to exploit the potentials that composite materials offer.

Innovative Design Analysis Solutions to Handle the Complexity of Modern Structures

This is a press article published by CAD User Magazine in June 2009.

"The signature buildings that architects love to put up these days might be designed to enhance the architect’s reputation along with the skyline of the client city, but their increasing complexities of shape pose significant challenges for the builders. In the first instance such large projects are never single sourced. They rely on close integration between a number of partners, each addressing significant issues. Secondly,
they come with demands for shorter development times with increased pressure to reduce engineering costs (engineering, because of the complexity of the projects, being a major cost element)."

Rapid Airbag Folding Technique for Side Curtain Airbag

TECOSIM has developed techniques which can shorten the folding & packaging process time to a few hours and still achieve the essential airbag deployment performance. We will present methods which rapidly fold a free mesh and allow for rapid shape changes for a detailed folded model. These methods can significantly reduce the turnaround time to incorporate design changes into the working CAE model for side impact and OOP [Out Of Position] studies. This technology can integrate airbag development further into the virtual world to allow ‘CAE led’ design of airbag profiles, chambers and seam lines to be established early in the design phase and establish a fully folded deployable airbag for all virtual phases.

The Use of MBD Modelling Techniques in the Design and Development of a Suspension System

This paper describes the use of Multi-body Dynamics (MBD) modelling techniques in the design and development of a suspension system for a novel autonomous vehicle. The general approach and philosophy is described, whereby MBD techniques are used in conjunction with an independent (parametric) whole vehicle handling simulation. This is supplemented with examples, showing how MotionSolve was used (in tandem with CarSim) to develop the suspension elasto-kinematic geometric properties to meet specific cascaded targets, to optimise a weighing strategy, to predict forces under a variety of quasi-static and dynamic loads, and to estimate response to track inputs.

Hawk T Mk2 - Arrestor Barrier (BAN MK2) Engagement Analysis

As the UK Ministry of Defence (MoD) Design Authority for Aircraft Arrestor Barrier Nets, AmSafe products are used to stop aircraft from over-running the end of the runway. The British Arrestor Net (BAN) Mk2 is suspended across the runway over-run area by two electrically driven stanchions and raised or lowered by remote control from the Air Traffic Control tower.

This paper describes the process and results of a FE analysis of the engagement of the Hawk T Mk2 aircraft into a Type A Barrier (BAN Mk2). The analysis was performed using RADIOSS, an advanced non-linear explicit Finite Element solver.

HUMOS - An FE Model for Advanced Safety and Comfort Assessments

Biomechanics modelling is becoming increasingly accepted as a tool for enhance assessment of vehicle safety, in particular in the field of injury assessment and virtual testing. Firstly, a generic RADIOSS model for safety applications (HUMOS2) is presented and applications are demonstrated. Important tools associated with the scaling, and positioning of the model is also described. Secondly, an innovative model for scaling of human organs (individualization) is presented. The method which employs optimization techniques, identifies critical (optimal) anatomical control points which allow for a best scaled model of the HUMOS2 representing an individual. Finally, some remaining challenges for future human models are discussed and solution paths are described.

Automotive Modal Testing Support and CAE Correlation Using Altair HyperWorks

To derive the natural frequencies and mode shapes of a given structure, the test Engineer has to decide on excitation positions that will efficiently excite all the modes of the structure in the frequency range of interest. Excitation positions are usually decided upon from experience or trial and error methods which can be time consuming and still not capture all of the modes in the selected frequency range. Using Altair HyperStudy and Radioss (bulk), Pre-test CAE analysis has been carried out to identify effective excitation positions before the commencement of modal testing, thereby significantly reducing pre-test lab time.

The Application of Process Automation and Optimisation in the Rapid Development of New Passenger Vehicles at SAIC Motor

As a relatively young automotive company, SAIC Motor has drawn on the expertise of its UK Technical Centre to help in its objective to bring a new range of vehicles to market in an aggressive time frame. CAE has formed an integral part in doing this and the UK technical centre has worked closely with Altair Product Design amongst others to utilise its Engineers’ skills as well as the Hyperworks suite of software.

The paper aims to showcase what has been achieved to date, on the Roewe 550 medium car programme - currently on sale in China - and on another current vehicle programme, where processes have been developed further. Several interesting optimisation examples are highlighted in the development of the body structure as well as some key process improvement methodologies which have been jointly developed between SAIC and Altair to streamline the design process.

Delivering Innovation and Intelligence in Product Design

Packaging designers must constantly inject innovations to attract consumers in a constantly evolving and highly competitive market. Keeping ahead of the competition by bringing new and exciting products to market faster whilst maintaining quality, presents a major engineering challenge. A new packaging development process is described, which introduces advanced automated simulation and optimization technology right from the concept development phase. Detailed predictions of primary, secondary and tertiary packaging performance are made possible through use of advanced simulation technology. Design optimization is then employed using the modelling as a virtual testing ground for design variants. The approach provides clear design direction, an opportunity for wider experimentation, helps to improve performance and reduces uncertainty in the development process.

Evolutionary Design in Chassis Technology

This paper details the use of the Thyssenkrupp eDICT process for the design of sheet metal chassis components. eDICT (evolutionary design in chassis technology) is an innovative structured process flow for the design of optimal structures. eDICT uses the optimisation capability of Optistruct with a set of custom tools to guide and translate a design into a production feasible sheet metal solution. Fundamentally it reverses the usual design loop of CAD first then CAE assessment. The function is used to determine the design and the form follows. On recent projects eDICT has produced 25% mass reductions compared to the current series design. eDICT is also able to reduce development times and resource with an efficient solution production right from the outset.

Fast Tracking Rail Vehicle Design

Bombardier Transportation UK offers one of the most comprehensive and diverse rail vehicle portfolios in the world. The strategy is one of continuous development that provides the most effective and cost-efficient rail solutions for today and the future. A key ingredient is the use of Altair HyperWorks enterprise computer aided engineering (CAE) solution. Altair's technology is now present at every stage of the design process and has increased the efficiency of the product development process. The paper details how Altair tools have been used to generate Finite Element (FE) models of carbodies, bogies and secondary structures in reduced time scales. Significant weight and cost savings are achieved through structural optimisation of components such as large steel castings, aluminium extrusions and steel fabricated structures which are subjected to linear static, fatigue and abuse loading. Automated post processing facilitates the interpretation of results and the writing of detailed official reports.

Targeting Composite Wing Performance – Optimising the Composite Lay-Up Design

This paper shows how Altair OptiStruct, part of the HyperWorks suite, is used to provide a complete solution when designing with laminated composites, taking the design through concept stages to producing the final ply lay-up sequence. The technology is applied to the design of a laminated wing cover to produce a mass optimised design which meets the requested structural targets.

Composite Optimisation of a Formula One Front Wing

This paper will show the application of a 3-stage approach to designing the optimum composite structure for a front wing on a Formula One car using Altair OptiStruct 9.0 Continual development of aerodynamic components is normal practice in the world of Formula One and the time taken to respond is paramount if a team is to be competitive.

Application of Optimisation Tools to the Design of Advanced Carbon Fibre Bicycle: FACTOR 001

FACTOR 001 is the result of a creative project by BERU f1systems to explore the transfer of design approaches, technology and materials from Formula One to a groundbreaking training bicycle. The design brief did not require the bicycle to comply with existing technical regulations, which resulted in great freedom during the design process. This paper details how OptiStruct Optimisation tools were used to help generate efficient lightweight solutions for the design of complex carbon fibre components. Free-size optimisation was used to generate laminate boundaries, ply thicknesses and fibre directions, which met stress and displacement requirements. Physical testing carried out on manufactured parts highlighted the accuracy of the FE models and demonstrated the advantages of incorporating OptiStruct Optimisation tools in the design process.

The CAE Driven Safety Development Process of the New Ford Fiesta

The new Fiesta is about premium feel of a larger car, delivers a new level of safety, driving quality and efficiency. The new Fiesta will be a great contribution towards sustainability and cost effective motoring. The first thing to notice is the design, but the vehicle performance and body structure attribute behaviour are the specific highlights to point out in this presentation. The attribute performance is not based on coincidences; the performance is a result of state of the art engineering work. Especially the safety performance in EuroNCAP.

Fighting Knee Pain with Finite Element Modeling

The Musculoskeletal Biomechanics Research Laboratory at USC, is using HyperWorks to investigate why so many people are incapacitated by knee pain when others are not. This is a tough, intractable issue for people with arthritic knees since there is no cure for arthritis today. Early detection can help and is the focus of USC’s work. (HyperMesh is used to create finite element models to analyze stress on the cartilage of the joint.)

利用有限元建模方法向膝盖疼痛宣战

      南加州大学(University of Southern California)的肌肉与骨骼生物力学研究实验室(Musculoskeletal Biomechanics Research Laboratory)使用HyperWorks来研究膝盖疼痛折磨许多病人而却放过其他人的原因。对患上膝盖关节炎的病人来说,由于缺乏治疗手段和药物,这一病痛极为棘手。然而,早期发现却有重要的意义,这同时也是南加州大学的研究工作重点。HyperMesh被用于创建有限元模型来分析关节软骨上的应力。

Altair® HyperWorks® and Product Design Consultation at Force Protection

At Force Protection Inc. Altair HyperWorks and Product Design work together to increase CAE throughput and improve survivability prediction in a new class of military vehicles built for unconventional warfare.

Injecting Innovation in Performance Engine Design with Altair HyperWorks

MAHLE Powertrain outsourced model generation of large complex parts such as heads and
blocks to low cost countries to ensure sufficient mesh quality could be produced for their
automotive engine designs. The third party’s improved capabilities proved valuable but
ultimately MAHLE Powertrain wished to bring the process back in-house to maintain control
and reduce external expenditure. To achieve this a new pre and post-processing solution was
needed. HyperWorks was selected as the new platform as it afforded the required increase in
productivity through its automatic mesh creation and batch processes.

Application of HyperWorks in the Subsea Oil and Gas Industry

The volatile nature of deep sea installations presents a difficult challenge for engineers
to create products which can withstand extremely high pressures in a variety of weather
conditions. Duco selected HyperWorks to model subsea umbilicals, resulting in improvements
to their analysis productivity allowing models to be constructed faster than before.

HyperWorks在海底油气工业中的应用

由于深海装置在海洋作用下的易波动性,在各种天气条件下,生产一种能够抵抗极端高压的设备,给工程师们提出了巨大的挑战。Duco选择了HyperWorks对水底脐带管进行建模,结果提高了他们的分析能力,使模型的创建速度比以前提高了很多。

Simultaneous Robust and Design Optimization of a Knee Bolster at Jaguar & Land Rover

Jaguar Cars needed a practical process to simultaneously optimize the robustness of a design
and its performance. Altair HyperStudy is applied to the design of an automotive knee bolster
system whereby the design is optimized to account for different sized occupants, impact
locations, material variation and manufacturing variation.

捷豹路虎公司进行膝垫的稳健性设计优化

      捷豹汽车需要一个可实践的流程进行设计的稳健性和性能的优化。Altair的HyperStudy被用来进行汽车膝垫优化设计,设计中考虑了不同尺寸的乘客,碰撞位置,材料因素和加工因素。

HyperWorks, especially OptiStruct is one of the central tools

Mathematical optimisation methods can provide significant support in virtual CAE part development. In the early phases of the project topology optimisation affords valuable clues to the design of the geometry of the part.

HyperWorks at B/E Aerospace: Lighter, Safer Seats for Airline Passengers

When you settle in for a flight on a major airline, you are probably in a seat and surrounded
by equipment designed and built by B/E Aerospace. With design and manufacturing facilities
across the globe, B/E Aerospace is the leading manufacturer of cabin interior products
for commercial and private passenger aircraft. One of B/E Aerospace’s leading products
is its line of commercial and business airline seats. These seats are engineered and tested
at its Commercial Airplane Products Group in Winston-Salem, North Carolina.

Multi-Disciplinary Design of an Aircraft Landing Gear with Altair HyperWorks

NAFEMS invited several software vendors to a roundtable in 2007 to demonstrate their best processes in the design of a
realistic aircraft landing gear system. (Figure 1). The emphasis was on simulation processes that can make problem solving innovative, accurate and efficient. This paper explains the
processes followed by engineers at Altair and should help increase awareness regarding the powerful tools available for solving realistic design problems.

HyperWorks事例 ProductDesign

日産ディーゼル工業株式会社様向けに実施した中型トラックの衝突シミュレーションにおいて、アルテア
エンジニアリングは社内に蓄積された解析ノウハウとインド支社のスタッフによるモデリングおよび解析リ
ソース支援により、精度の高いシミュレーションを短期間で実施し、新型車の開発に解析結果を有効活
用することができました。

PBS Professional at AMET: Harnessing A New High Performance Cluster

AMET (Applied Mechatronic Engineering and Technologies) began operations
in 1999 as a spinoff from the Mechatronics Laboratory of the Politecnico di Torino. Today the Turin-based company (www.amet.it) boasts a client list that includes well-known names from a broad range of industries
including aerospace, rail, and automotive. Its products, from dummies to
door-testers, and its range of engineering and process design services, are all based on high performance computing simulations.

PBS Professional at Chrysler: Managing 250,000 Simulations a Year

The people who design cars and trucks at Chrysler have been using computer simulation tools since the 1980s. Since those early beginnings, the use of computer-aided engineering and finite element analysis has expanded to become the powerhouse enabler for Chrysler designers that it is today.

PBS Professional在克莱斯勒: 每年管理25万个仿真

克莱斯勒公司的汽车与卡车设计师从20世纪80年代起就开始使用计算机仿真工具。由于很早就开始使用这些工具,所以计算机辅助工程和有限元分析已得到了广泛应用,现如今,这已成为克莱斯勒设计师的核心源动力。

Page: 1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17  18   19   20  

RSS icon Subscribe to RSS Feed